今回の問題は「集合の表し方と要素」です。
問題次の問いに答えよ。
\({\small (1)}~\)\(6\) 以下の自然数の集合 \(\rm A\) を書き並べて表せ。
\({\small (2)}~\)正の偶数の集合 \(\rm B\) を書き並べて表せ。また、式を用いた集合で表せ。
\({\small (3)}~\)\({\rm C}=\{~x~|~x\)は1けたの素数 \(\}\) とするき、次の[ ]に \( \in \) または \( \notin \) を入れよ。
\({\large ①}\) 3[ ]C \({\large ②}\) 1[ ]C
\({\large ③}\) 8[ ]C \({\large ④}\) 13[ ]C
\({\small (1)}~\)\(6\) 以下の自然数の集合 \(\rm A\) を書き並べて表せ。
\({\small (2)}~\)正の偶数の集合 \(\rm B\) を書き並べて表せ。また、式を用いた集合で表せ。
\({\small (3)}~\)\({\rm C}=\{~x~|~x\)は1けたの素数 \(\}\) とするき、次の[ ]に \( \in \) または \( \notin \) を入れよ。
\({\large ①}\) 3[ ]C \({\large ②}\) 1[ ]C
\({\large ③}\) 8[ ]C \({\large ④}\) 13[ ]C
次のページ「解法のPointと問題解説」