オンライン家庭教師生徒募集中!詳しくはTwitterにて!

必要条件と十分条件

スポンサーリンク
スポンサーリンク

今回の問題は「必要条件と十分条件」です。

問題次の \(p~,~q\) に対して、\(p\) は \(q\) の何になるか「必要条件である」、「十分条件である」、「必要十分条件である」、「必要条件でも十分条件でもない」の中から選んで答えよ。また、文字はすべて実数である。
\({\small (1)}~p\):\(x^2=4\)、\(q\):\(x=2\)
\({\small (2)}~p\):\(x~,~y\) がともに有理数、\(q\):\(xy\)が有理数
\({\small (3)}~p\):\(xy>0\)、\(q\):\(x>0\) かつ \(y>0\)
\({\small (4)}~p\):ある四角形がひし形、\(q\) :ある四角形が平行四辺形
\({\small (5)}~p\):2つの正方形が合同、\(q\):2つの正方形の面積が等しい

 

スポンサーリンク
スポンサーリンク

必要条件と十分条件の判別

Point:必要条件と十分条件\(p\) は \(q\) の〜であるの判定は、
① 次の図を描く。

「\(p~\Rightarrow~q\)」と「\(q~\Rightarrow~p\)」のそれぞれの真偽を判定し、①の図の矢印に◯×を付ける。
③ 次の図より、必要条件と十分条件を判定する。

例えば、

このとき、\(p\) は、\(q\) であるための十分条件
 

このとき、\(p\) は、\(q\) であるための必要条件
 

このとき、\(p\) は、\(q\) であるための必要十分条件
 

このとき、どちらでもないとなります。

 

問題解説:必要条件と十分条件

問題解説(1)

問題次の \(p~,~q\) に対して、\(p\) は \(q\) の何になるか「必要条件である」、「十分条件である」、「必要十分条件である」、「必要条件でも十分条件でもない」の中から選んで答えよ。また、文字はすべて実数である。
\({\small (1)}~p\):\(x^2=4\)、\(q\):\(x=2\)

\(p\):\(x^2=4~\Leftrightarrow~x=\pm2\)
\(q\):\(x=2\)
 
\(p~\Rightarrow~q\) は \(x=-2\) のとき、\(p\) は満たすが \(q\)を満たさないので偽となります。
\(q~\Rightarrow~p\) は常に成り立つので真となります。
よって、

となるので、答えは必要条件となります。

 

問題解説(2)

問題次の \(p~,~q\) に対して、\(p\) は \(q\) の何になるか「必要条件である」、「十分条件である」、「必要十分条件である」、「必要条件でも十分条件でもない」の中から選んで答えよ。また、文字はすべて実数である。
\({\small (2)}~p\):\(x~,~y\) がともに有理数、\(q\):\(xy\)が有理数

\(p\):\(x~,~y\) がともに有理数
\(q\):\(xy\) が有理数
 
\(p~\Rightarrow~q\) は常に成り立つので真となります。
\(q~\Rightarrow~p\) は \(x=\sqrt{2}~,~y=\sqrt{2}\) のとき、\(q\) は満たすが \(p\) は満たさないので偽となります。
よって、

となるので、答えは十分条件となります。

 

問題解説(3)

問題次の \(p~,~q\) に対して、\(p\) は \(q\) の何になるか「必要条件である」、「十分条件である」、「必要十分条件である」、「必要条件でも十分条件でもない」の中から選んで答えよ。また、文字はすべて実数である。
\({\small (3)}~p\):\(xy>0\)、\(q\):\(x>0\) かつ \(y>0\)

\(p\):\(xy>0\)
\(q\):\(x>0\) かつ \(y>0\)
 
\(p~\Rightarrow~q\) は \(x=-1~,~y=-2\) のとき、\(p\) は満たすが \(q\)を満たさないので偽となります。
\(q~\Rightarrow~p\) は常に成り立つので真となります。
よって、

となるので、答えは必要条件となります。

 

問題解説(4)

問題次の \(p~,~q\) に対して、\(p\) は \(q\) の何になるか「必要条件である」、「十分条件である」、「必要十分条件である」、「必要条件でも十分条件でもない」の中から選んで答えよ。また、文字はすべて実数である。
\({\small (4)}~p\):ある四角形がひし形、\(q\) :ある四角形が平行四辺形

\(p\):四角形がひし形
\(q\):四角形が平行四辺形
 
平行四辺形の分類図は次のようになります。

これより、\(p~\Rightarrow~q\) は常に成りたち真となり
\(q~\Rightarrow~p\) は反例があり偽となります。
よって、

となるので、答えは十分条件となります。

 

問題解説(5)

問題次の \(p~,~q\) に対して、\(p\) は \(q\) の何になるか「必要条件である」、「十分条件である」、「必要十分条件である」、「必要条件でも十分条件でもない」の中から選んで答えよ。また、文字はすべて実数である。
\({\small (5)}~p\):2つの正方形が合同、\(q\):2つの正方形の面積が等しい

\(p\):2つの正方形が合同
\(q\):2つの正方形の面積が等しい
 
\(p~\Rightarrow~q\) は合同であれば、面積が等しくなるので真となります。
\(q~\Rightarrow~p\) は正方形であるので面積が等しいとき、1辺の長さも等しくなるので2つの正方形は合同になります。よって、真となります。
これらより、

となるので、答えは必要十分条件となります。

 

今回のまとめ

必要条件と十分条件の解法の手順と判定方法はできるように練習しておきましょう。また、様々な数学的知識も必要となりますので覚えておきましょう。

【問題一覧】数学Ⅰ:集合と論理
このページは「高校数学Ⅰ:集合と論理」の問題一覧ページとなります。解説の見たい単元名がわからないとき...