Twitterフォローよろしくお願いします!

n進法と小数

スポンサーリンク
スポンサーリンク

今回の問題は「n進法と小数」です。

問題次の問いに答えよ。
\({\small (1)}\) 次の数を10進法の小数で表せ。$${\large ①}~0.101_{(2)}~~~~~{\large ②}~0.231_{(5)}$$\({\small (2)}\) 次の10進法で表された数を[ ]進法で表せ。$${\large ①}~0.625~~[~2~]~~~~~{\large ②}~0.728~~[~5~]$$

 

スポンサーリンク
スポンサーリンク

n進法と小数の解法

Point:n進法の小数を10進法で表すn進法での小数点以下の位は、小数第一位から順に、$$~~~\frac{1}{n^1}~,~\frac{1}{n^2}~,~\frac{1}{n^3}~,~\cdots$$となります。
 
例えば、\(0.412_{(5)}\) のときは、

\(\frac{1}{5^1}\) \(\frac{1}{5^2}\) \(\frac{1}{5^3}\)
\(4\) \(1\) \(2\)

よって、上下をかけ算して足し合わせると、$$~~~~~~\frac{1}{5^1}\times4+\frac{1}{5^2}\times1+\frac{1}{5^3}\times2$$$$~=\frac{4}{5}+\frac{1}{25}+\frac{2}{125}$$$$~=\frac{100+5+2}{25}$$$$~=\frac{107}{125}$$$$~=0.856$$これより、10進法で表すことができます。

Point:10進法の小数をn進法で表す

例えば、\(0.856\) を5進法で表すときは、小数部分のみに \(5\) をかけ算していきます。
\(\hspace{ 27 pt}0.856\)
\(\hspace{ 10 pt} \underline{~\times \hspace{ 20 pt}5~}\)
\(\hspace{ 27 pt}4.280\)
整数部分は \(4\)、小数部分は \(0.28\) であることより、
\(\hspace{ 27 pt}0.28\)
\(\hspace{ 10 pt} \underline{~\times \hspace{ 15 pt}5~}\)
\(\hspace{ 27 pt}1.40\)
整数部分は \(1\)、小数部分は \(0.4\) であることより、
\(\hspace{ 27 pt}0.4\)
\(\hspace{ 10 pt} \underline{~\times \hspace{ 10 pt}5~}\)
\(\hspace{ 27 pt}2.0\)
整数部分は \(2\)、小数部分は \(0\) となります。
このように、小数部分が \(0\) となるまで繰り返します。
 
答え方は、
① 元の数の整数部分を先頭の一の位とする。
② かけ算した結果の整数部分を順に小数点以下の数として書き並べる。
これより、5進法で表すと、$$~~~0.412_{(5)}$$となります。

 

問題解説:n進法と小数

問題解説(1)

問題次の問いに答えよ。
\({\small (1)}\) 次の数を10進法の小数で表せ。$${\large ①}~0.101_{(2)}~~~~~{\large ②}~0.231_{(5)}$$

$${\large ①}~0.101_{(2)}$$各位の数を表にまとめると、

\(\frac{1}{2^1}\) \(\frac{1}{2^2}\) \(\frac{1}{2^3}\)
\(1\) \(0\) \(1\)

表より、上下をかけ算して足し合わせると、$$~~~~~~\frac{1}{2^1}\times1+\frac{1}{2^2}\times0+\frac{1}{2^3}\times1$$$$~=\frac{1}{2}+\frac{1}{8}$$$$~=\frac{4+1}{8}$$$$~=\frac{5}{8}$$\(5\div8\)より、小数で表すと、$$~=0.625$$よって、答えは$$~~~0.625$$となります。

 

$${\large ②}~0.231_{(5)}$$各位の数を表にまとめると、

\(\frac{1}{5^1}\) \(\frac{1}{5^2}\) \(\frac{1}{5^3}\)
\(2\) \(3\) \(1\)

表より、上下をかけ算して足し合わせると、$$~~~~~~\frac{1}{5^1}\times2+\frac{1}{5^2}\times3+\frac{1}{5^3}\times1$$$$~=\frac{2}{5}+\frac{3}{25}+\frac{1}{125}$$$$~=\frac{50+15+1}{125}$$$$~=\frac{66}{125}$$\(66\div125\)より、小数で表すと、$$~=0.528$$よって、答えは$$~~~0.528$$となります。

 

問題解説(2)

問題次の問いに答えよ。
\({\small (2)}\) 次の10進法で表された数を[ ]進法で表せ。$${\large ①}~0.625~~[~2~]~~~~~{\large ②}~0.728~~[~5~]$$

$${\large ①}~0.625~~[~2~]$$小数部分のみに \(2\) をかけ算していくと、
\(\hspace{ 27 pt}0.625\)
\(\hspace{ 10 pt} \underline{~\times \hspace{ 20 pt}2~}\)
\(\hspace{ 27 pt}1.250\)
整数部分は \(1\)、小数部分は \(0.25\) であることより、
\(\hspace{ 27 pt}0.25\)
\(\hspace{ 10 pt} \underline{~\times \hspace{ 15 pt}2~}\)
\(\hspace{ 27 pt}0.50\)
整数部分は \(0\)、小数部分は \(0.5\) であることより、
\(\hspace{ 27 pt}0.5\)
\(\hspace{ 10 pt} \underline{~\times \hspace{ 10 pt}2~}\)
\(\hspace{ 27 pt}1.0\)
整数部分は \(1\)、小数部分は \(0\) となります。
よって、2進法で表すと、$$~~~0.101_{(2)}$$となります。

 

$${\large ②}~0.728~~[~5~]$$小数部分のみに \(5\) をかけ算していくと、
\(\hspace{ 27 pt}0.728\)
\(\hspace{ 10 pt} \underline{~\times \hspace{ 20 pt}5~}\)
\(\hspace{ 27 pt}3.640\)
整数部分は \(3\)、小数部分は \(0.64\) であることより、
\(\hspace{ 27 pt}0.64\)
\(\hspace{ 10 pt} \underline{~\times \hspace{ 15 pt}5~}\)
\(\hspace{ 27 pt}3.20\)
整数部分は \(3\)、小数部分は \(0.2\) であることより、
\(\hspace{ 27 pt}0.2\)
\(\hspace{ 10 pt} \underline{~\times \hspace{ 10 pt}5~}\)
\(\hspace{ 27 pt}1.0\)
整数部分は \(1\)、小数部分は \(0\) となります。
よって、5進法で表すと、$$~~~0.331_{(5)}$$となります。

 

今回のまとめ

n進法の小数を10進法にするときは、各位を分数で表すことをおさえておきましょう。また、10進法の小数をn進法にするときは、nを小数部分のみに次々とかけ算していき、 計算結果よりn進法で表す手順を覚えておきましょう。

【問題一覧】数学A:整数の性質
このページは「高校数学A:整数の性質」の問題一覧ページとなります。解説の見たい単元名がわからない...