Twitterフォローよろしくお願いします!

平均変化率

スポンサーリンク
スポンサーリンク

今回の問題は「平均変化率」です。

問題関数 \(f(x)=2x^2-3\) について以下の問いに答えよ。
\({\small (1)}\) \(x=2\) から \(x=4\) までの平均変化率を求めよ。
\({\small (2)}\) \(x=2\) から \(x=2+h\) までの平均変化率を求めよ。

 

スポンサーリンク
スポンサーリンク

平均変化率の解法

Point:平均変化率関数 \(y=f(x)\) において、\(x\) の値が \(a\) から \(b\) まで変化するときの平均変化率は、

\(f(x)\) \(f(a)~\to~f(b)\)
\(x\) \(a~\to~b\)

この表より、分母分子をそれぞれ「あと−まえ」の計算をすると、

$$\frac{f(b)-f(a)}{b-a}$$

これが平均変化率となります。

 

問題解説:平均変化率

問題解説(1)

問題関数 \(f(x)=2x^2-3\) について以下の問いに答えよ。
\({\small (1)}\) \(x=2\) から \(x=4\) までの平均変化率を求めよ。

\(x=2\) のとき、$$~~~~~~f(2)$$$$~=2\cdot2^2-3$$$$~=8-3$$$$~=5$$
\(x=4\) のとき、$$~~~~~~f(4)$$$$~=2\cdot4^2-3$$$$~=32-3$$$$~=29$$
よって、表にまとめると、

\(f(x)\) \(5~\to~29\)
\(x\) \(2~\to~4\)

表より、平均変化率は$$~~~~~~\frac{29-5}{4-2}$$$$~=\frac{24}{2}$$$$~=12$$
よって、答えは \(12\) となります。

 

問題解説(2)

問題関数 \(f(x)=2x^2-3\) について以下の問いに答えよ。
\({\small (2)}\) \(x=2\) から \(x=2+h\) までの平均変化率を求めよ。

\(x=2\) のとき、$$~~~~~~f(2)$$$$~=2\cdot2^2-3$$$$~=8-3$$$$~=5$$
\(x=2+h\) のとき、$$~~~~~~f(2+h)$$$$~=2\cdot(2+h)^2-3$$$$~=2(4+4h+h^2)-3$$$$~=8+8h+2h^2-3$$$$~=2h^2+8h+5$$
よって、表にまとめると、

\(f(x)\) \(5~\to~2h^2+8h+5\)
\(x\) \(2~\to~2+h\)

表より、平均変化率は$$~~~~~~\frac{(2h^2+8h+5)-5}{(2+h)-2}$$$$~=\frac{2h^2+8h}{h}$$$$~=2h+8$$よって、答えは \(2h+8\) となります。

 

今回のまとめ

平均変化率を求めるときは、\(f(x)\) と \(x\) のそれぞれの変化量の表を作り考えるようにしましょう。

【問題一覧】数学Ⅱ:微分と積分
このページは「高校数学Ⅱ:微分と積分」の問題一覧ページとなります。解説の見たい単元名がわからないとき...