オンライン家庭教師生徒募集中!詳しくはこちらから!

ベクトルの内積①(基本)

スポンサーリンク
スポンサーリンク

今回の問題は「ベクトルの内積①(基本)」です。

問題次の問いに答えよ。
\({\small (1)}\) \(|\overrightarrow{a}|=3~,~|\overrightarrow{b}|=4\) として、\(\overrightarrow{a}\) と \(\overrightarrow{b}\) のなす角が \(\theta\) が以下の値のとき、内積 \(\overrightarrow{a}\cdot\overrightarrow{b}\) を求めよ。$$~{\large ①}~\theta=30^\circ~~~~~~~~{\large ②}~\theta=60^\circ$$$$~{\large ③}~\theta=90^\circ~~~~~~~~{\large ④}~\theta=135^\circ$$\({\small (2)}\) 1辺の長さが \(3\) の正三角形 \({\rm ABC}\) と辺 \({\rm BC}\) の中点 \({\rm M}\) について、次の内積を求めよ。$$~{\large ①}~\overrightarrow{\rm AB}\cdot\overrightarrow{\rm AC}~~~~~~~~{\large ②}~\overrightarrow{\rm AB}\cdot\overrightarrow{\rm AM}$$$$~{\large ③}~\overrightarrow{\rm AB}\cdot\overrightarrow{\rm BC}~~~~~~~~{\large ④}~\overrightarrow{\rm BM}\cdot\overrightarrow{\rm BC}$$

 



次のページ「解法のPointと問題解説」